4 research outputs found

    Energy Management and Economic Operation Optimization of Microgrid under Uncertainty

    Get PDF
    Microgrid provides an effective means to promote renewable energy utilization via deploying multiple distributed generations (DGs) with energy storage systems (ESSs), loads, control devices and protect devices, which can operate in either islanded mode or grid-connected mode. In order to coordinate the output of different DGs and realize the potential of renewable energy, energy management and economic dispatch of microgrid is needed. Both distributed energy resources (DERs) and user loads in microgrid have uncertainty characteristics; so the randomness of the wind speed and solar radiation intensity are modeled by interval mathematics and the interval output of the wind turbine and photovoltaic (PV) generation system are obtained. Then, a microgrid economic optimization model based on interval optimization method is proposed. Next, combined with the time-of-use characteristic, issue of the power exchange with the external grid has been considered. Finally, Considering the effect of ESS, this chapter discusses the impacts of uncertainty of renewable energy power and load power on optimization results, as well as the effects of the degree of load uncertainty or load fluctuation on scheduling results. The results verify the robustness and effectiveness of the proposed method in dealing with uncertainty optimization problem of microgrid

    Hybrid interval AHP-entropy method for electricity user evaluation in smart electricity utilization

    No full text
    Abstract Smart electricity utilization (SEU) is one of the most important components in a smart grid. It is crucial to evaluate efficiency, safety, and demand response capability of electricity users to achieve the smart use of electricity. The analytic hierarchy process (AHP) uses subjective criteria to determine index weights in multi-criteria decision-making problems, while the entropy method provides objectivity in determining index weights. Taking into account the uncertainty of expert scoring and user data, a hybrid interval analytic hierarchy process (IAHP) and interval entropy (IE) method is proposed for electricity user evaluation (EUE). Specifically, in the proposed method, electricity users are evaluated in terms of energy efficiency, safety monitoring, and demand response. The weights of EUE indices are calculated under uncertainty. The proposed approach derives subjective weights of EUE indices by the IAHP with expert scoring as input data, and determines objective weights of EUE indices by the IE method with user data as inputs. In order to obtain the optimal combined index weights, the two weights are normalized by a selected weight factor. Numerical case studies illustrate the effectiveness and advantages of the proposed approach, which combines subjective and objective information to derive the optimal combined index weights

    Observations of Forbush Decreases of Cosmic-Ray Electrons and Positrons with the Dark Matter Particle Explorer

    No full text
    The Forbush decrease (FD) represents the rapid decrease of the intensities of charged particles accompanied with the coronal mass ejections or high-speed streams from coronal holes. It has been mainly explored with the ground-based neutron monitor network, which indirectly measures the integrated intensities of all species of cosmic rays by counting secondary neutrons produced from interaction between atmospheric atoms and cosmic rays. The space-based experiments can resolve the species of particles but the energy ranges are limited by the relatively small acceptances except for the most abundant particles like protons and helium. Therefore, the FD of cosmic-ray electrons and positrons have just been investigated by the PAMELA experiment in the low-energy range (<5 GeV) with limited statistics. In this paper, we study the FD event that occurred in 2017 September with the electron and positron data recorded by the Dark Matter Particle Explorer. The evolution of the FDs from 2 GeV to 20 GeV with a time resolution of 6 hr are given. We observe two solar energetic particle events in the time profile of the intensity of cosmic rays, the earlier, and weaker, one has not been shown in the neutron monitor data. Furthermore, both the amplitude and recovery time of fluxes of electrons and positrons show clear energy dependence, which is important in probing the disturbances of the interplanetary environment by the coronal mass ejections
    corecore